Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Sci Adv ; 8(12): eabm0220, 2022 03 25.
Article in English | MEDLINE | ID: covidwho-1765069

ABSTRACT

Conventional approaches to isolate and characterize nanobodies are laborious. We combine phage display, multivariate enrichment, next-generation sequencing, and a streamlined screening strategy to identify numerous anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nanobodies. We characterize their potency and specificity using neutralization assays and hydrogen/deuterium exchange mass spectrometry (HDX-MS). The most potent nanobodies bind to the receptor binding motif of the receptor binding domain (RBD), and we identify two exceptionally potent members of this category (with monomeric half-maximal inhibitory concentrations around 13 and 16 ng/ml). Other nanobodies bind to a more conserved epitope on the side of the RBD and are able to potently neutralize the SARS-CoV-2 founder virus (42 ng/ml), the Beta variant (B.1.351/501Y.V2) (35 ng/ml), and also cross-neutralize the more distantly related SARS-CoV-1 (0.46 µg/ml). The approach presented here is well suited for the screening of phage libraries to identify functional nanobodies for various biomedical and biochemical applications.


Subject(s)
COVID-19 , Camelids, New World , Single-Domain Antibodies , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Viral , Camelids, New World/metabolism , Humans , Membrane Glycoproteins , Neutralization Tests , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins/metabolism
2.
Clin Transl Immunology ; 11(3): e1379, 2022.
Article in English | MEDLINE | ID: covidwho-1729116

ABSTRACT

Objectives: Population-level measures of seropositivity are critical for understanding the epidemiology of an emerging pathogen, yet most antibody tests apply a strict cutoff for seropositivity that is not learnt in a data-driven manner, leading to uncertainty when classifying low-titer responses. To improve upon this, we evaluated cutoff-independent methods for their ability to assign likelihood of SARS-CoV-2 seropositivity to individual samples. Methods: Using robust ELISAs based on SARS-CoV-2 spike (S) and the receptor-binding domain (RBD), we profiled antibody responses in a group of SARS-CoV-2 PCR+ individuals (n = 138). Using these data, we trained probabilistic learners to assign likelihood of seropositivity to test samples of unknown serostatus (n = 5100), identifying a support vector machines-linear discriminant analysis learner (SVM-LDA) suited for this purpose. Results: In the training data from confirmed ancestral SARS-CoV-2 infections, 99% of participants had detectable anti-S and -RBD IgG in the circulation, with titers differing > 1000-fold between persons. In data of otherwise healthy individuals, 7.2% (n = 367) of samples were of uncertain serostatus, with values in the range of 3-6SD from the mean of pre-pandemic negative controls (n = 595). In contrast, SVM-LDA classified 6.4% (n = 328) of test samples as having a high likelihood (> 99% chance) of past infection, 4.5% (n = 230) to have a 50-99% likelihood, and 4.0% (n = 203) to have a 10-49% likelihood. As different probabilistic approaches were more consistent with each other than conventional SD-based methods, such tools allow for more statistically-sound seropositivity estimates in large cohorts. Conclusion: Probabilistic antibody testing frameworks can improve seropositivity estimates in populations with large titer variability.

3.
Nat Commun ; 13(1): 155, 2022 01 10.
Article in English | MEDLINE | ID: covidwho-1616979

ABSTRACT

Antibodies binding to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike have therapeutic promise, but emerging variants show the potential for virus escape. This emphasizes the need for therapeutic molecules with distinct and novel neutralization mechanisms. Here we describe the isolation of a nanobody that interacts simultaneously with two RBDs from different spike trimers of SARS-CoV-2, rapidly inducing the formation of spike trimer-dimers leading to the loss of their ability to attach to the host cell receptor, ACE2. We show that this nanobody potently neutralizes SARS-CoV-2, including the beta and delta variants, and cross-neutralizes SARS-CoV. Furthermore, we demonstrate the therapeutic potential of the nanobody against SARS-CoV-2 and the beta variant in a human ACE2 transgenic mouse model. This naturally elicited bispecific monomeric nanobody establishes an uncommon strategy for potent inactivation of viral antigens and represents a promising antiviral against emerging SARS-CoV-2 variants.


Subject(s)
Antibodies, Bispecific/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Single-Domain Antibodies/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Bispecific/metabolism , COVID-19/virology , Chlorocebus aethiops , Cryoelectron Microscopy , HEK293 Cells , Humans , Mice, Transgenic , Neutralization Tests/methods , Protein Binding , Protein Conformation , Protein Multimerization/immunology , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Single-Domain Antibodies/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
4.
Cell Rep Med ; 2(11): 100450, 2021 11 16.
Article in English | MEDLINE | ID: covidwho-1475125

ABSTRACT

Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) with resistance to neutralizing antibodies are threatening to undermine vaccine efficacy. Vaccination and infection have led to widespread humoral immunity against the pandemic founder (Wu-Hu-1). Against this background, it is critical to assess the outcomes of subsequent immunization with variant antigens. It is not yet clear whether heterotypic boosts would be compromised by original antigenic sin, where pre-existing responses to a prior variant dampen responses to a new one, or whether the memory B cell repertoire would bridge the gap between Wu-Hu-1 and VOCs. We show, in macaques immunized with Wu-Hu-1 spike, that a single dose of adjuvanted beta variant receptor binding domain (RBD) protein broadens neutralizing antibody responses to heterologous VOCs. Passive transfer of plasma sampled after Wu-Hu-1 spike immunization only partially protects K18-hACE2 mice from lethal challenge with a beta variant isolate, whereas plasma sampled following heterotypic RBD boost protects completely against disease.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , COVID-19 , Female , HEK293 Cells , Humans , Macaca mulatta/immunology , Male , Mice , Models, Animal , SARS-CoV-2/metabolism
5.
Cell Rep Med ; 2(4): 100252, 2021 04 20.
Article in English | MEDLINE | ID: covidwho-1164615

ABSTRACT

The outbreak and spread of SARS-CoV-2 (severe acute respiratory syndrome-coronavirus-2) is a current global health emergency, and effective prophylactic vaccines are needed urgently. The spike glycoprotein of SARS-CoV-2 mediates entry into host cells, and thus is the target of neutralizing antibodies. Here, we show that adjuvanted protein immunization with soluble SARS-CoV-2 spike trimers, stabilized in prefusion conformation, results in potent antibody responses in mice and rhesus macaques, with neutralizing antibody titers exceeding those typically measured in SARS-CoV-2 seropositive humans by more than one order of magnitude. Neutralizing antibody responses were observed after a single dose, with exceptionally high titers achieved after boosting. A follow-up to monitor the waning of the neutralizing antibody responses in rhesus macaques demonstrated durable responses that were maintained at high and stable levels at least 4 months after boosting. These data support the development of adjuvanted SARS-CoV-2 prefusion-stabilized spike protein subunit vaccines.


Subject(s)
Antibodies, Neutralizing/blood , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Viral/blood , COVID-19/prevention & control , COVID-19/veterinary , COVID-19/virology , COVID-19 Vaccines/immunology , Female , Macaca mulatta , Male , Memory B Cells/immunology , Memory B Cells/metabolism , Mice , Mice, Inbred C57BL , Protein Domains/immunology , Protein Subunits/immunology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Time Factors , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL